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Abstract. An extended set of observables of the nuclear quasi-free (p, dπ+) reaction including the triple dif-
ferential cross-section for coincidence measurements, its analyzing power in case of polarized proton beams
and, also, the parameters of the polarization of the excited recoil nucleus and the produced deuteron are con-
sidered in the framework of the distorted-wave impulse approximation using the reaction 16O(p, dπ+)15N
at a proton energy of 650 MeV as an example. The calculations show a high sensitivity of the differential
cross-section and, especially, of the polarization transfer characteristics of the reaction to the spin-multipole
decomposition of the amplitude of the basic two-body pp → dπ+ process.

PACS. 21.60.Gx Cluster models – 24.50.+g Direct reactions – 24.70.+s Polarization phenomena in reac-
tions – 25.70.Bc Elastic and quasielastic scattering

1 Introduction

The nuclear (p, d π+) reaction is of interest for extended
experimental and theoretical studies as an example of
specific quasi-free cluster composing processes where,
contrary to the well-known (p, p d) reaction [1–4], the
deuteron is not knocked-out from a nucleus under quasi-
elastic proton scattering from the deuteron cluster, but is
formed together with the pion in the two-body proton-
proton collision pp → dπ+.

The quasi-free character of the nuclear (p, d π+) reac-
tion was demonstrated in Dubna in 1970 in the course
of the investigation of the interaction of 670MeV protons
with the 12C target [5]. The kinematic analysis of two char-
acteristic bumps in the deuteron energy distribution has
pointed out to their clear correspondence to the forward-
angle and back-angle deuteron production in the center-
of-mass frame of the two-body pp → dπ+ process. The
contribution of this mechanism to the deuteron yield was
shown to prevail over that from the deuteron quasi-elastic
knock-out reaction p + d → p + d. These results opened a
way to theoretical investigations in the field [6,7] includ-
ing a first estimate of the advantages [6] expected to come
from coincidence deuteron-pion measurements. The pos-
sibility to obtain information on the population of excited
states of the recoil nucleus in the (p, dπ+) reaction was
one of them.

a e-mail: balvse@anna19.sinp.msu.ru

First coincidence (p, dπ+) measurements were per-
formed two decades later at Stellenbosch with the reac-
tion 12C(p, dπ+)11Bg.s. [8]. In spite of the rather low en-
ergy of the proton beam used in these experiments (which
was even below the pp → dπ+ threshold on a free pro-
ton at rest), the measurement results and their theoreti-
cal analysis in the same paper have led to an unambigu-
ous conclusion about the quasi-free nature of the reac-
tion observed. The present-day level of experimental and
theoretical studies on the quasi-free process (p, dπ+) is
demonstrated by paper [9] devoted to the nuclear reac-
tion 12C(p, dπ+)11B. Much higher proton energies (370
and 500MeV against 223MeV in paper [8]), a good en-
ergy resolution which makes possible to separate the re-
action channels corresponding to the ground and to low-
lying excited states of the recoil nucleus, a set of differ-
ent combinations of the deuteron and pion detection an-
gles, and using a polarized incoming proton beam —all
these experimental advantages of the studies [9] were en-
forced by a scrupulous theoretical analysis of the measure-
ment results performed in this paper within PWIA and
DWIA versions of the impulse approximation. To obtain
and analyze the differential cross-sections and the analyz-
ing power not only for the recoil nucleus ground state but
also, at the same level, for its excited states was one of
the main goals of the work [9]. Here, in comparison be-
tween experimental results and calculations, a number of
open questions remained. They led the authors of paper [9]
(part VI, right side) to conclude that another case, the re-
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action 16O(p, dπ+)15N, could be more interesting than the
reaction 12C(p, dπ+)11B for further investigation of the
general features of the quasi-free (p, dπ+) process. This
conclusion became a starting point for our own study. Be-
sides, one cannot miss one important result of the mea-
surements [9] which was not discussed in that paper. We
mean a remarkable difference in the profile of the pion
energy dependence of the differential cross-sections of the
reaction to the ground state of the recoil nucleus and to
its excited state 11B

∗
(3/2−; 5.02MeV). All angular mo-

menta and parity quantum numbers are identical in these
two channels corresponding to the case of the collision of
the bombarding proton with a nuclear proton in the same
1p3/2 shell. According to basic concepts of the quasi-free
approach, their differential cross-sections must be propor-
tional to their spectroscopic factors, with no more differ-
ence between them. Observed purely experimentally, the
violation of this criterium in the reaction 12C(p, dπ+)11B
is highly significant.

Our general approach to consider the differential cross-
section d3σ/dΩddΩπdTπ and the analyzing power Ap,πd

for the (p, dπ+) reaction is outlined in sect. 2. To stress
the quasi-free character of the reaction under considera-
tion, it is interesting to go to a higher energy of the in-
coming proton than in papers [8,9]. Two sources [10,11]
are well known to parameterize the amplitude of the free
two-body reaction pp → dπ+. We take the same Bugg
systematization as in paper [9] and perform our calcula-
tion for the incoming proton energy Tp = 650MeV, which
corresponds to the upper limit of data available in [10].
All our calculations are made within the distorted-wave
DWIA approach compared, in some cases, with the sim-
plified PWIA one to show the role of the initial- and
final-state proton, deuteron and pion interactions with the
nucleus. The orientation to higher energies of the proton
beam makes it possible to simplify the procedure to cal-
culate the distorted-wave functions of the projectile and
produced particles and to use, instead of the partial-wave
expansion approach of paper [9], the eikonal (Glauber)
method, increasingly used in recent theoretical calcula-
tions on the quasi-free processes [12,13]. When calculating
the differential cross-section d3σ/dΩddΩπdTπ, we do not
factorize it to the two-body pp → dπ+ cross-section and
nuclear form factor (such an approximation, in spite of
the rather high energy of our proton, would be too rough
in this case).

In sect. 3 we present our results for the differen-
tial cross-section and analyzing power of the reaction
16O(p, dπ+)15N in its two channels 16O → 15N(1p−1

1/2) and
16O → 15N(1p−1

3/2). The polarization of the recoil nucleus

and produced deuteron is considered in sect. 4. A special
attention is given to the concept of effective (orbital) po-
larization of the target proton induced by the initial-state
and final-state particle-nucleus interactions. We show that
its applicability is limited by the spin-orbit effects in the
distortion of the wave functions of the incoming proton
and, especially, of the produced deuteron. As a fact, all
the characteristics of the reaction taken for consideration
—from the differential cross-section of the reaction with

non-polarized protons to the proton-to-deuteron polariza-
tion transfer parameters— are calculated without using
the effective polarization concept. Nevertheless, a number
of parallel calculations of the same characteristics are per-
formed using this concept to show that, depending on the
conditions taken, it can either be working well or turns
out to be invalid. To investigate the sensitivity of the ob-
servables of the (p, dπ+) reaction to the parametrization
of the amplitude of the elementary two-body pp → dπ+

process is another important goal of our work.
The Madison convention [14] to choose the coordinate

frame and quantization axis is used throughout this work.

2 The (p, dπ+) reaction in the DWIA

approach

2.1 Reaction amplitude, differential cross-section,
analyzing power

Consider the differential cross-section for the (p, dπ+) re-
action from a zero-spin nucleus where the pion and the
deuteron are produced with momenta kπ and kd under
the condition that the recoil nucleus remains in a fixed
state |JR〉 with its total angular momentum JR. Suppose,
to begin, that no polarization parameters of the incoming
proton and of both the recoil nucleus and the produced
deuteron are detected. The equation

d3σJR

dΩπdΩddTπ
(kπ,kd;kp) =

1

2

×
∑

µp,µd,MR

∣

∣〈JR,MR;kπ,kd, µd|F̂ |kp, µp〉
∣

∣

2
(1)

with kp standing for the momentum of the incoming pro-
ton, where the sum is taken over magnetic quantum num-
bers µp, µd and MR of the proton, the deuteron and
the recoil nucleus, connects this differential cross-section
with the reaction amplitude 〈JR,MR;kπ,kd, µd|F̂ |kp, µp〉.
Within the DWIA approximation, the latter is calculated
using the amplitude 〈Kπd, µd|t̂(Ec.m.

pp′→dπ+)|Kpp′ , µp, µp′〉
of the two-body free process pp → dπ+

〈JR,MR;kπ,kd, µd|F̂ |kp, µp〉 = (KlabNT )1/2

×
∑

µp′

〈Kπd, µd|t̂(Ec.m.
pp′→dπ+)|Kpp′ , µp, µp′〉

×F(JR,MR, µp′ ;kπ,kd,kp), (2)

where Ec.m.
pp′→dπ+ , Kpp′ and Kπd are the total energy and

momenta of the corresponding pairs of particles in their
center-of-mass frame.

Usually, the nuclear matrix element

F(JR,MR, µp′ ;kπ,kd,kp) = cJR

(−1)l+sp−MR

√
2JR + 1

×
∑

ml

(lml, spµp′ |JR,−MR)Hnlml
(kπ,kd,kp) (3)
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is reduced to a simple overlap integral

Hnlml
(kπ,kd,kp) = (2π)−3/2

×
∫

eikRrΦnlml
(r)

[

D
(−)
kd

(r)D
(−)
kπ

(r)
]∗

D
(+)
kp

(r)d3r (4)

of the target proton wave function Φnlml
(r) and distorted-

wave functions of the incoming proton and two produced
particles. Strictly speaking, the former should be calcu-
lated separately for each of the reaction channels taking
into account the proton binding energy difference between
them. The calculation shows, however, that this effect is
negligibly small in our case. For the same reason, we be-
lieve that the wave functions of the remaining part of the
target nucleons overlap completely with those in the re-
coil nucleus. As for the distorted waves, we calculate them
within the eikonal approximation

ψkp
(r) = eikprD

(+)
kp

(r);

D
(+)
kp

(r) = exp

(

− i

βp

∫ ∞

0

Vp

(

r − kp

kp
s

)

ds

)

, (5)

where βp and
kR = kp − kd − kπ

stand for the velocity of the corresponding particles and
the recoil nucleus momentum. Equation (2) also contains:
a kinematic factor

Klab =
kπkd

kp
·
k∗

p

k∗
π

(E∗

π + E∗

d)
E∗

p + E∗
p′

E∗
p′

×Ep

E∗
p

Eπ

E∗
π

Ed

E∗

d

∣

∣1 − βdβR/β2
d

∣

∣

−1

(given here in the lab frame); the total energies Ei, E∗
i

of the particle i in the lab frame and in the center-of-
mass frame of the two-body process pp → dπ+; the total
number of protons NT in the nuclear shell taking part
in the reaction; the fraction parentage coefficient cJR

for
the overlap degree between the wave function of the target
nucleus in its ground state and that of the recoil nucleus in
the corresponding reaction channel. The latter, together
with NT , is leading to the spectroscopic factor SJR

of the
reaction

SJR
= NT |cJR

|2 .

The formulae above disregard spin-dependent interac-
tions in the initial and final states of the reaction. When
taking these interactions into account and inserting the

spin-orbit component V
(ls)
p (r) = αls(r)LpSp into the op-

tical potentials V̂p(r) = V
(c)
p (r) + V

(ls)
p (r) of the incom-

ing proton and the produced deuteron, we extend this

formalism and treat the distortion factors D
(+)
kp

(r) and

D
(−)
kd

(r) of both particles as matrices D̂
(±)
k (r) over the

magnetic quantum numbers of their spin. Together with
them, the integral (4) is transformed into a direct product

Ĥnlml
(kπ,kd,kp) of corresponding 2 × 2 and 3 × 3 spin

matrices.

The matrix elements of the generalized distortion fac-
tors are calculated as

〈µ|D̂p(kp; r)|ν〉 = φ(µ)
ν (r)

by using the auxiliary functions φ
(µ)
ν (r) satisfying a system

of differential equations

i
∂φ

(µ)
ν (b, z)

∂z
=

1

βp

∑

ν′

〈ν|V̂p(b, z)|ν′〉φ(µ)
ν′ (b, z). (6)

They are solved approximately by substituting the kine-
matically determined proton or deuteron momenta kp, kd

into the angular-momentum operator L̂ = [r̂ × p̂] of the

corresponding particle instead of the operator p̂ = −ih̄∇̂
of its momentum.

In calculating the proton distortion factor D̂
(+)
p (kp; r)

these equations are solved under the condition

φ(µp)
νp

(b, z = −∞) = δµp,νp
,

where µp, νp stands for the spin orientation quantum num-
bers of the proton. Using the time reversal relation

D
(−)
kd

(r) = D
(+)
−kd

(r)∗ ,

equations of the same form are used to obtain the spin ma-

trix D̂
(−)
d (kd; r) for the deuteron distortion factor. Here,

the procedure consists of two steps. First, we follow (6)

to calculate the matrix 〈µd|D̂(−)
d (kd; r

′)|νd〉 in the coordi-
nate frame r′ = (b′, z′) with the quantization axis z along
the deuteron momentum kd. Then, using Wigner spin ro-

tation matrices D
(Sd=1)
µµ′ (kd → kp), it is transformed into

the laboratory coordinate frame with the axis z along the
incoming proton momentum kp.

According to general rules to deal with off-energy-shell
effects in nuclear quasi-free processes, the relative mo-
menta Kpp′ , Kπd of the two colliding protons and of the
produced pion-deuteron pair as well as their total energy
Ec.m.

pp′→dπ+ in the center-of-mass frame can be calculated

using the initial energy prescription or the final energy
prescription (see, e.g., [8]). But the calculation shows that
the difference between these two variants is very small at
our energy Tp = 650MeV.

Equation (1) is reduced to a simpler one within the fac-
torization approximation [15]. Here the differential cross-
section is calculated as

d3σJR

dΩπdΩddTπ
(kπ,kd;kp) = Klab

(

dσ

dΩπ

)(c.m.)

×WJR
(kπ,kd;kp), (7)

where
(

dσ

dΩπ

)c.m.

=
1

(2sp + 1)(2sp′ + 1)

×
∑

µpµp′µd

|〈Kπd, µd|t̂(Ec.m.
pp′→dπ+)|Kpp′ , µp, µp′〉|2
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stands for the differential cross-section of the free two-
body process pp → dπ+ in the center-of-mass frame of
the interacting particles while the distorted momentum
distribution of the target proton

WJR
(kπ,kd;kp) =

NT

∑

MRµp′

|F(JR,MR, µp′ ;kπ,kd,kp)|2 =

SJR

2l + 1

∑

ml

|Hnlml
(kπ,kd;kp)|2

enters the equation as a nuclear form factor. Within the
PWIA approach it is transformed into the momentum dis-
tribution |Φnl(kR)|2 of the target proton.

For the (p, dπ+) reaction with polarized protons, we
introduce the analyzing power of the differential cross-
section (1) in its standard form

A0(kπ,kd|kp) =
d3σ

(up)
JR

− d3σ
(down)
JR

d3σ
(up)
JR

+ d3σ
(down)
JR

, (8)

where d3σ
(up/down)
JR

stands for the cross-sections for pro-
tons totally polarized “up” (µp = 1/2) or “down” (µp =
−1/2) along the normal n to the reaction plane. They
can be calculated using eq. (1) when summation over the
magnetic quantum number µp of the incoming proton is
excluded from this formula. According to the Madison
convention [14], the axis z is directed along the incom-
ing proton momentum kp; the axis y is perpendicular to
the reaction plane and directed along the vector product
n ∼ [kp×kπ] of the momenta of the incoming proton and
produced pion; so, the axis x lies in the reaction plane.

2.2 Amplitude of the free two-body process pp → dπ+

With usual angular-momentum algebra, one de-
composes the two-body pp → dπ+ amplitude (2)
into a superposition of the partial amplitudes
〈Lπd|tJ(Ec.m.

pp′→dπ+)|Lpp′Spp′〉

〈Kπd, µd|t̂|Kpp′ , µp, µp′〉 =
∑

LπdLpp′Spp′J

cJ(Kπd, µd, Lπd;Kpp′ , µp, µp′ , Lpp′ , Spp′)

×
√

4π

2Lpp′ + 1
〈Lπd|tJ(Ec.m.

pp′→dπ+)|Lpp′ , Spp′〉, (9)

cJ (Kπd, µd, Lπd;Kpp′ , µp, µp′ , Lpp′ , Spp′) =
∑

Mπd,Mpp′

(spµp, spµp′ |Spp′σpp′)(LπdMπd, sdµd|JM)

×(Lpp′Mpp′ , Spp′σpp′ |JM)YLπdMπd
(K̂πd)Y

∗

Lpp′Mpp′
(K̂pp′),

where Lpp′ and Lπd are the relative orbital momenta of
the corresponding pairs of particles in the initial and final
states and Spp′ is the summed spin of the two colliding pro-
tons. The widely used notation by Mandle and Regge [16]
for the first seven amplitudes a0, . . . , a6 is given in table 1.

Table 1. Nomenclature [16] for the partial amplitudes
〈Lπd|tJ(Ec.m.

pp′
→dπ+)|Lpp′ , Spp′〉.

Amplitude Spp′ Lpp′ Lπd J

a0 0 0 1 0

a1 1 1 0 1

a2 0 2 1 2

a3 1 1 2 1

a4 1 1 2 2

a5 1 3 2 2

a6 1 3 2 3
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Fig. 1. Momentum kR of the recoil nucleus in the reaction
16O(p, dπ+)15Ng.s. as a function of pion kinetic energy Tπ

(both kR and Tπ in the lab frame) under conditions (10).

3 Reaction 16O(p, dπ+)15N: differential

cross-section and analyzing power

3.1 Kinematic and geometry conditions; input
parameters for the calculation

Following [9], consider a coplanar case of the (p, dπ+) reac-
tion. In the quasi-free process, the maximal intensity of the
πd coincidence events corresponds to the region of small
values kp′ of the target proton momentum (in light 1p-
shell nuclei, near 180MeV/c). Throughout this paper we
fix the incoming proton energy, the polar and azimuthal
escape angles of the produced pion and deuteron as

Tp = 650MeV;

θlab
π = 52◦; θlab

d = 12◦; φlab
π = 0; φlab

d = 180◦ . (10)

Then, in each of the reaction channels 16O → 15N(1p−1
1/2)

and 16O → 15N(1p−1
3/2), the kinetic energy T lab

i of any par-

ticle in the final state of the reaction determines all other
kinematic variables of the reaction in both lab and center-
of-mass frames. Figure 1 shows the momentum kR of the
recoil nucleus 15N as a function of kinetic energy Tπ of the
produced pion under conditions (10). At Tπ = 188MeV,
the recoil momentum kR is zero. The differential cross-
section of the reaction under consideration is localized
mainly in the Tπ region from 100 to 300MeV. In this range
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the kinetic energy T lab
d of the deuteron falls linearly with

Tπ from 400MeV to 200MeV, while the momentum Kπd

of the πd pair in their center-of-mass frame is rising (also
practically linearly) from 165MeV/c up to 315MeV/c. In
this frame, the pion escape angle is practically constant in
the whole range: θc.m.

π ≈ 85◦.
We use standard Woods-Saxon parameters V0 =

50MeV, R = 2.9 fm and a = 0.7 fm to calculate the
wave function of the target proton. The optical poten-
tial V̂p(r) for the incoming proton is obtained by trans-
formation of the Dirac equation optical potential [17]
into the Schödinger equation form. The parameters of
the deuteron-nucleus interaction Vd(r) including its spin-
orbit part were obtained by interpolation of those from
work [18] for the elastic scattering of polarized deuterons
from the 16O nucleus at 200, 400 and 700MeV. The
Rayligh-Lax form

Vπ(r) = − i

2
βπσπN (1 − iαπN )ρN (r),

with the resonance pion-nucleon cross-section

σπN (kc.m.
π )=σ0

πN

(Γ∆[ρN (r)]
2 )2

(M(kc.m.
π ) − M∆)2 + (Γ∆[ρN (r)]

2 )2
+σbgr

(11)
to take into account the ∆-isobar formation, is used for
the pion-nucleus optical potential where M(kc.m.

π ) is the
effective mass of the πN pair. The nuclear density de-
pendence of the decay width Γ∆[ρN (r)] of the ∆-isobar
comes from taking into account its two-nucleon annihila-
tion channel N∆ → NN in nuclear matter. We introduce
this correction within the local density approximation to
the self-energy Σ∆ of the ∆-isobar

Γ∆[ρN (r)] = Γ
(free)
∆ − 2 Im Σ∆[ρN (r)]

following its parametrization in [19]. The numerical values

σ0
πN = 200mb, M∆ = 1232MeV, Γ

(free)
∆ = 115MeV,

σbgr = 10mb, απN = 0 for the other parameters are taken
from [20].

3.2 Differential cross-sections and the analyzing power

in channels 16O →
15N(1p

−1

1/2
) and 16O →

15N(1p
−1

3/2
)

The calculated differential cross-sections for a case of
non-polarized incoming protons are shown in fig. 2 in
solid lines. The results for the two reaction channels
16O → 15N(1p−1

1/2) and 16O → 15N(1p−1
3/2) differ from

each other insignificantly: their Tπ-dependence is practi-
cally the same while their ratio 1:2 is not more than the
statistical weight ratio for the corresponding (1p−1

1/2) and

(1p−1
3/2) states of the recoil nucleus. The figures show also

that the factorization approximation (dashed lines) leads
practically to the same results as obtained without this
approximation.

Another situation takes place concerning the analyz-
ing power A0(Tπ). Its Tπ-dependence is different in the
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Fig. 2. Differential cross-section and analyzing power
A0(kπ, kd|kp) for the reaction 16O(p, dπ+)15N in the 16O →
15N(1p−1

1/2) and 16O → 15N(1p−1
3/2) channels as a function of

the pion kinetic energy Tπ in the lab frame calculated with the
spin-orbit term in the proton and deuteron optical potentials
taken (solid lines) and not taken (dash-dotted lines) into ac-
count; dashed lines —the same as in solid lines but calculated
within the factorization approximation (7).
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channels 16O → 15N(1p−1
1/2) and 16O → 15N(1p−1

3/2), while

the range of variation of its value with Tπ is much wider
in the first case in comparison to the second one. The ana-
lyzing power calculated without the factorization approx-
imation differs considerably from that obtained within
this approximation. In the latter case the analyzing power
A0(Tπ) for the reaction 16O(p, dπ+)15N is reduced to that
in the elementary two-body pp → dπ+ process and is the
same in both reaction channels 16O → 15N(1p−1

1/2) and
16O → 15N(1p−1

3/2) within the DWIA as well as within the

PWIA approach.
The dash-dotted lines in fig. 2 correspond to the DWIA

calculations similar to those shown by solid lines but sim-
plified by ignoring the spin-orbit term in the optical poten-
tials of the proton-nucleus and deuteron-nucleus interac-
tion in the initial and final states of the reaction. The com-
parison of these calculations confirms expectations in [9]
that the final-state spin-orbit deuteron-nucleus interac-
tions can be of negligibly small influence on the differen-
tial cross-section of the (p, dπ+) reaction with unpolarized
protons as well as on its initial-state spin observables in
case of polarized protons such as the analyzing power of
the reaction.

The role of the ∆-isobar formation in the final state of
the reaction is another important aspect of the problem
of the influence of the distortion of the proton, deuteron
and pion wave functions by their interaction with the nu-
cleus on the reaction observables. Figure 3 shows that a
strong modification of the pion-nucleus interaction in the
nuclear matter due to the ∆-isobar formation leads not
only to some damping of the pion production but also to
nontrivial transformation of the Tπ profile of the analyzing
power of the reaction.

3.3 Effective polarization of the nuclear proton

The concept of effective (orbital) polarization of the nu-
clear proton in direct quasi-free processes is well known
in physics of the quasi-elastic (p, 2p) reaction [21–23]. In
paper [9] it was used to treat the (p, dπ+) reaction. The
observation of a small influence of the spin-orbit distort-
ing interactions on the differential cross-section and the
analyzing power of the reaction was made in the preced-
ing subsection. On this ground and continuing the line of
paper [9] one can introduce a simplified concept of the
effective orbital polarization of the target proton by ig-
noring the spin-orbit distortion effects in the initial and
final states of the reaction with the purpose to use it, at
least, in calculating reaction observables averaged over the
orientation of the spin of the produced deuteron. We shall
operate with the parameter Peff (kp;kπ,kd) of the effec-
tive orbital polarization in the (p, dπ+) reaction when all
three momenta kp, kπ and kd lie in one plane (the copla-
nar geometry). In our case of the 1p-shell target nucleus
this reads

Peff (kp;kπ,kd) =

|H1p,ml=1(kp;kπ,kd)|2−|H1p,ml=−1(kp;kπ,kd)|2
|H1p,ml=1(kp;kπ,kd)|2+|H1p,ml=−1(kp;kπ,kd)|2

, (12)
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Fig. 3. Differential cross-section and analyzing power
A0(kπ, kd|kp) for the 16O(p, dπ+)15N(1p−1

3/2) reaction calcu-

lated taking into account (solid lines) and ignoring (dashed
lines) the first (resonance) term in the pion-nucleus cross-
section (11).

where the nuclear matrix elements H1p,ml=±1(kp;kπ,kd)
with ml = ±1 are calculated according to the simple equa-
tion (4) with projection ml = ±1 of the proton orbital
momentum taken on the normal to the reaction plane.

This parameter can serve as a measure of combined in-
fluence of the initial-state and final-state particle-nucleus
interactions on the reaction observables. It disappears in
the PWIA case. In the DWIA calculations, its magnitude
and its Tπ profile depend mainly on the imaginary part
of the corresponding optical potentials (see fig. 4). It is of
practical use to note that Peff (kp;kπ,kd) shows the de-
gree of deviation of the analyzing power of the differential
cross-section for the (p, dπ+) nuclear reaction from that
for the free two-body process pp → dπ+. In our case of
the reaction 16O(p, dπ+)15N, their interrelation is demon-
strated by equations

A(1p−1
1/2

)

0 (kπ,kd|kp) =
Abeam − PeffCcorrel

1 − PeffAtarget
, (13)

A(1p−1
3/2

)

0 (kπ,kd|kp) =
Abeam + 1

2PeffCcorrel

1 + 1
2PeffAtarget

(14)

for both reaction channels 16O → 15N(1p−1
1/2) and 16O →

15N(1p−1
3/2). Here Abeam, Atarget and Ccorrel are the ana-

lyzing power and proton spin correlation parameters in the
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Fig. 4. DWIA calculations for the effective polarization
Peff (kp; kπ, kd) of the nuclear 1p proton in the reaction
16O(p, dπ+)15N under conditions (10); the dashed line shows
the calculation after neglecting the real part of the optical po-
tentials.
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Fig. 5. Parameters Abeam (solid line), Atarget (dash-dotted
line) and Ccorrel (dashed line) of eqs. (13), (14) as a function
of the pion energy Tπ under conditions (10) of the nuclear
reaction 16O(p, dπ+)15N.

free two-body reaction pp → dπ+. Their Tπ-dependence
under conditions (10) is presented in fig. 5.

We consider the parameters Abeam, Atarget and Ccorrel

in detail in sect. 4.1 in the course of extension of eqs. (13)
and (14). Now note a clear correlation between the
Tπ-dependence of the analyzing power A0(Tπ) for the
16O(p, dπ+)15N(1p−1

3/2) reaction in fig. 2 and, on the other

hand, the Tπ-behavior of the effective polarization param-
eter Peff in fig. 4.

3.4 Sensitivity of the differential cross-section of the
reaction 16O(p, dπ+)15N to the parametrization of the
two-body pp → dπ+ amplitude

Since the 50s, when the reaction pp → dπ+ was one of the
hot points on the boundary between nuclear and particle
physics (see, e.g. [16] and references herein), the prob-
lem of parametrization of its amplitude (see eq. (9) and
table 1) has attracted much attention of experimental-
ists and theoreticians. At that time an understanding was

formed about the dominant contribution of its s- and p-
wave components a0, a1, a2 to the multipole-spin decom-
position (9). At present, it continues to serve as a key in
current investigations of the problem. Detailed measure-
ments of the angular distribution of the reaction pp → dπ+

were performed recently in Julich with protons of en-
ergy 320MeV [24]. They confirmed the weakness of the
d-components of the amplitude at this energy. A similar
conclusion was made at the Indiana University [25] where
the spin transfer in the reaction pp → dπ+ was investi-
gated in the proton energy range of 350–400MeV. Experi-
ments with higher proton energy are needed to know more
about d-waves in the process under consideration. One can
expect that at 500MeV in [9] and at 650MeV of our cal-
culation the role of next a3, a4, a5 and a6 components of
table 1 could be more pronounced in both the two-body
pp → dπ+ process and the nuclear (p, dπ+) reaction. Our
calculation of the reaction 16O(p, dπ+)15N confirms this
expectation (see fig. 6).

4 Recoil nucleus and produced deuteron

polarization in the reaction 16O(p, dπ+)15N

4.1 Spin density matrix of the excited recoil nucleus
15N(3/2−)

The question of polarization of the angular momentum
of the excited recoil nuclei in quasi-free processes, such
as the (p, 2p) and (p, dπ+) reactions, could be of practi-
cal interest in triple coincidence measurements where two
heavy particles (the πd pair in the latter case) are detected
together with characteristic γ-radiation from the excited
residual nucleus. One knows good examples of success-
ful application of this approach to resolve the population
(and possible alignment) of discrete excited states of such
residual system in other studies [26,27]. In our case of the
(p, dπ+) reaction, disregard evident experimental difficul-
ties of such measurements, we would like to have a look
at possible directions of theoretical assistance in the prac-
tical realization of such measurements in the future. The
approach we suggest here will be extended in the next
section when discussing a similar problem of deuteron po-
larization.

4.1.1 Angular distribution of γ-radiation from the excited
recoil nucleus

The angular distribution Wγ(θγ , φγ)|kπ,kd
of the γ-

radiation from an excited state |JR〉 of the recoil
nucleus to the lower-lying one |J0〉 for the reaction
16O(p, dπ+)15N

∗
(3/2−), provided both momenta kπ and

kd of the detected pion and deuteron are known, is
determined by the angular-momentum density matrix
〈JRMR|ρ̂R(kπ,kd)|JRM ′

R〉 of the excited state and the in-
tensity ratio between the M1 and E2 components of the
γ-transition. The density matrix is calculated as a bilin-
ear combination of the reaction amplitudes (2) summed



104 The European Physical Journal A

100 150 200 250 300

0

0.5

1

1.5

2

Tπ, MeV

d
3
σ

/d
T

π
d

Ω
π
d

d
,µ

b
(M

eV
s
r 

 )2 1 p(1/2)
−1

Ω

100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

3.5

Tπ, MeV

d
3
σ

/d
T

π
d
Ω

π
d

d
,µ

b
(M

eV
s
r 

 )2 1 p(3/2)
−1

Ω

Fig. 6. Differential cross-section of the reaction
16O(p, dπ+)15N in channels 16O → 15N(1p−1

1/2) and
16O → 15N(1p−1

3/2) calculated with the total set a0, . . . , a6

(solid lines) and with three components a0, a1 and a2 only
(dashed lines) of the Bugg amplitude [10].

over the polarization quantum numbers of the produced
deuteron

〈JRMR|ρ̂R(kπ,kd)|JRM ′

R〉 =

1

2

∑

µp,µd

〈JR,MR;kπ,kd, µd|F̂ |kp, µp〉

×〈JR,M ′

R;kπ,kd, µd|F̂ |kp, µp〉∗ . (15)

(In a particular case of non-polarized proton beam, it is
also averaged over the polarization of the incoming pro-
ton.) We parameterize such density matrix using the rep-
resentation of its statistical tensors (see, e.g., [28,29])

ρkq(JR, JR)|kπ,kd
=

∑

MR,M ′

R

(−1)JR−M ′

R

×(JRMR, JRM ′

R|kq)〈JRMR|ρ̂R(kπ,kd)|JRM ′

R〉, (16)

where (JRMR, JR − M ′
R|kq) are the Clebsh-Gordan coef-

ficients. The equation

Wγ(θγ , φγ)|kπ,kd
=

1

4π

×
[

1+
∑

k

αk(JR→J0)
∑

q

ρkq(JR, JR)|kπ,kd

ρ00(JR, JR)|kπ,kd

Ykq(θγ , φγ)

]

(17)
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Fig. 7. Angular distribution Wγ(θγ , φγ = 0) of the
15N

∗

(1p−1
3/2) →

15Ng.s.(1p−1
1/2) γ-radiation in the reaction plane

in coincidence with the deuteron and the pion from the reaction
16O(p, dπ+)15N induced by non-polarized protons under condi-
tions (10) at a pion energy of Tπ = 150 MeV (upper part) and
190 MeV (lower part) calculated within the DWIA (solid lines)
and PWIA (dashed lines) approximations. The vertical dash-
dotted lines show the direction of the recoil momentum kR.

connects angular distribution of γ-quanta with the re-
duced statistical tensors Akq(JR, JR) = ρkq(JR, JR)/ρ00

(alignment parameters) of the excited state; the numer-
ical coefficients αk(JR → J0) (radiation parameters) are
determined by the angular-momentum quantum numbers
JR and J0 of the initial and final states of the recoil nu-
cleus in the transition.

Figure 7 shows the considerable angular anisotropy
of the 6.32MeV γ-radiation from the 15N

∗
(1p−1

3/2) →
15Ng.s.(1p−1

1/2) transition in the reaction 16O(p, dπ+)15N

calculated within the DWIA approach under condi-
tions (10) for the case of a non-polarized incoming pro-
ton beam; the pion energy values 150MeV and 190MeV
correspond to the maximum and minimum in the Tπ-
dependence of the differential cross-section of this reaction
(fig. 2). The proton, deuteron and pion interactions with
the nucleus in the initial and final states of the reaction
influence the angular distribution of the photon consider-
ably and violate, in particular, its symmetry around the
vector of recoil momentum kR typical for the PWIA cal-
culations.

Turning to the reaction 16O(p, dπ+)15N
∗
(1p−1

3/2) in-

duced by polarized protons, consider first a case when the
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16O(p, dπ+)15N

∗

(3/2−) under conditions (10). The dash-
dotted line shows the DWIA calculation for A2(kπ, kd|kp) by
eq. (20).

spin of the incoming proton is directed normally to the
reaction plane. Selection rules based on general symmetry
arguments cancel here all statistical tensors with the odd
index q. So, to analyze the reaction 16O(p, dπ+)15N(3/2−)
one needs two sets of parameters ρk0(3/2−, 3/2−;µp) with
k = 0 and k = 2, where µp = ±1/2 stands for the ey-
projection of the spin of the incoming proton. Two of them
ρ00(3/2−, 3/2−;µp = ±1/2) are proportional to the differ-
ential cross-section d3σJR

(kπ,kd;kp, µp)/dΩπdΩddTπ of
the reaction averaged over the population of the mag-
netic sublevels |JRMR〉 of the excited state. Taken to-
gether, all of them determine the angular distribution
Wγ(θγ , φγ)|

kπ,kd;P
(in)
y

of the radiation in the case of the

(p, dπ+) reaction induced by protons linearly polarized

along the normal to the reaction plane; P
(in)
y stands for the

polarization degree. As an indicator of the dependence of
the polarization parameters ρkq(JR, JR)|

kπ,kd,P
(in)
y

of the

excited nucleus (and, hence, of the angular distribution of
the radiation) on the polarization properties of the incom-
ing beam, we introduce an analyzing power of alignment
of the excited state of the recoil nucleus

A2(kπ,kd|kp) =
ρ20(P

(in)
y = 1) − ρ20(P

(in)
y = −1)

ρ20(P
(in)
y = 1) + ρ20(P

(in)
y = −1)

(18)

to refer to this ratio as to an analogue of the analyzing
power of the differential cross-section of the reaction in its
standard form (8).

The calculation of the analyzing powers A2(kπ,kd|kp)
and A0(kπ,kd|kp) (fig. 8) shows that the alignment pa-

rameter ρ20(3/2, 3/2) of the recoil nucleus 15N
∗
(3/2−) is

more sensitive to the direction of the polarization vector
of the incoming protons than the differential cross-section
of the reaction. It changes also much stronger when one
goes from the PWIA to the DWIA calculations. Within
PWIA, both A2(kπ,kd|kp) and A0(kπ,kd|kp) are reduced

Table 2. Numerical parameters of formula (19) for the reaction
16O(p, dπ+)15N

∗

(3/2−).

k a b c d

0 1 1 1/2 1/2

2 1/2 1/2 1 1

to the parameter Abeam for the free two-body process:

A0(kπ,kd|kp)
∣

∣

PWIA
= A2(kπ,kd|kp)

∣

∣

PWIA
= Abeam .

4.1.2 Sensitivity of polarization characteristics of the recoil
nucleus to spin-orbit forces in the proton and deuteron
optical potentials

Continuing our discussion of sect. 3.2 on the role of
spin-orbit effects in the distortion of the proton and
deuteron wave functions in the initial and final states
of the reaction, we compare direct calculations for
the analyzing power A2(kπ,kd|kp) via the equation
chain (2), (15), (16), (18) with those performed according
to sect. 3.3 within the simplified concept of the effective
orbital polarization of the nuclear proton. A formula was
obtained in [9] representing the differential cross-section of
the (p, dπ+) reaction via polarization parameters Abeam,
Atarget, Ccorrel of the free two-body process pp → dπ+

and the nuclear effective polarization parameter Peff . To
illustrate the dependence of polarization characteristics of
the excited state on these parameters we suggest an ex-
tension of this formula to other statistic tensors ρk0:

ρk0(3/2, 3/2;P (in)
y ) =

a+bAbeamP (in)
y +cAtargetPeff +dP (in)

y PeffCcorrel . (19)

Here a, b, c, d are numerical parameters dependent, for a
given reaction channel, only on the rank k of the statistical
tensor (table 2).

The parameters Abeam and Atarget for the analyzing
power in the free two-body process pp → dπ+ and the
parameter Ccorrel for the proton spin correlation in this
process are related to the amplitude of this process by
equations

τ(µp, µ
′

p)=
∑

µd

|〈K̂πd, µd|t̂|K̂pp′ , µp, µp′〉|2 ,

τbeam(µp)=
∑

µp′

τ(µp, µp′),

τtarget(µp′)=
∑

µp

τ(µp, µp′),

Abeam =
τbeam(1/2) − τbeam(−1/2)

τbeam(1/2) + τbeam(−1/2)
,

Atarget =
τtarget(1/2) − τtarget(−1/2)

τtarget(1/2) + τtarget(−1/2)
,

Ccorrel =
τ( 1

2 , 1
2 )+τ(− 1

2 ,− 1
2 )−τ( 1

2 ,− 1
2 )−τ(− 1

2 , 1
2 )

τ( 1
2 , 1

2 )+τ(− 1
2 ,− 1

2 )+τ( 1
2 ,− 1

2 )+τ(− 1
2 , 1

2 )
.
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Using eq. (19) one can approximate the analyzing
power of the differential cross-section of the reaction
16O(p, dπ+)15N

∗
(3/2−) (eq. (14)) and also, on the same

level, the alignment analyzing power in this reaction

A2(kπ,kd|kp) =
Abeam + 2PeffCcorrel

1 + 2PeffAtarget
(20)

within the simplified effective orbital polarization concept
and compare them with the corresponding direct calcu-
lations (8) and (18). Calculations (18) and (20) for the
reaction 16O(p, dπ+)15N

∗
(3/2−) presented by solid and

dash-dotted lines in fig. 8 show no considerable influence
of the spin-orbit distortion of the proton and deuteron
wave functions in the reaction on the alignment of the
angular momentum of the excited recoil nucleus.

As was outlined in [9], the concept of effective polar-
ization is associated with the problem of the modification
of the two-body nucleon-nucleon interaction in nuclei and
the localization of the reaction under consideration in nu-
clear matter. The calculation in fig. 3 shows that the role
of such modification in the (p, dπ+) reaction is important,
indeed. However, we do not consider the concept of effec-
tive polarization as a universal one and in the next part
of the paper, coming to polarization characteristics of the
produced deuteron, do not address to this concept and
perform our calculations starting directly from the gen-
eral equations of sects. 2.1–3.1.

4.2 Vector and tensor polarization of the produced
deuteron

The general character and the degree of polarization of
the produced deuteron are determined by spin-dependent
characteristics of the free two-body process pp → dπ+,
polarization of the incoming proton beam, kinematic and
geometry conditions of detecting the pion and deuteron
and also by initial-state and final-state distortions of the
wave functions of the incoming and outgoing particles.
Consider the polarization of the deuteron in both channels
16O → 15N(1p−1

1/2) and 16O → 15N(1p−1
3/2) of the (p, dπ+)

reaction under the same conditions (10) as in figs. 2–8 with
the spin-orbit effects in the generalized distortion factors

D̂
(+)
p (kp; r) and D̂

(−)
p (kd; r) taken (and, for comparison,

not taken) into account.
The vector and tensor polarization of the deuteron

are calculated using the statistical tensors ρ
(d)
kdqd

(Sd, Sd) =

ρ
(d)
kdqd

(1, 1) of the spin of the deuteron after they are aver-
aged over the orientation of the angular momentum JR of

the recoil nucleus. Each component of ρ
(d)
kdqd

(1, 1) is a sum
of two terms where the first of them does not depend on
the polarization of the incoming proton (the induced po-
larization) while the other (the transferred polarization) is
proportional to the polarization degree P (in) of the proton
beam:

ρ
(d)
kq (1, 1) =

(

ρ
(d)
kq

)(unpol)

+ ∆ρ
(d)
kq · P (in) ;

(ρ
(d)
kq )(unpol) and ∆ρ

(d)
kq are bilinear forms of the Bugg am-

plitudes [10].
The deuteron vector polarization in the (p, dπ+) reac-

tion is calculated as

P (d) =
P (unpol) +

∑

ij eiKijP
(in)
j

1 + P (in) · R , (21)

where ei with i = x, y, z are unit vectors along the axes
of the coordinate frame. Other parameters of this formula
are calculated as Trace of bilinear combinations of the T -
matrix of the reaction over non-observed variables of the
process (in our case —over the orientation of the angular
momentum of the recoil nucleus). They are

P (unpol) =
1

N
Tr

(

T̂+S(d)T̂
)

(22)

—the vector polarization of the deuteron when the incom-
ing proton beam is non-polarized;

Kij =
1

N
Tr

(

S
(d)
i T̂ σ

(p)
j T̂+

)

(23)

—the matrix of the coefficients of polarization transfer
from the incoming proton to the produced deuteron. The
auxiliary vector

R =
1

N
Tr

(

T̂σ(p)T̂+
)

(24)

is directed along the normal ey to the reaction plane;
its component Ry coincides with the analyzing power
A0(kπ,kd|kp) of the reaction (they both vanish within the
PWIA approach). The normalization factor N in the de-
nominators of the equations above is the differential cross-
section of the reaction averaged over all its polarization
parameters.

4.2.1 A particular case: the incoming proton is
non-polarized or polarized along the normal to the reaction

plane: P (in) = (0, P
(in)
y , 0)

Under this condition the initial state of the system is sym-
metric relative to the reaction plane and it remains the
same in the course of the reaction. Hence, the deuteron
polarization vector is also perpendicular to the reaction

plane: P (d) = (0, P
(d)
y , 0). Figure 9 demonstrates a similar

variation of the polarization degree P
(d)
y with the pion en-

ergy Tπ in both reaction channels 16O → 15N(1p−1
1/2) and

16O → 15N(1p−1
3/2). The magnitude P

(d)
y of the polariza-

tion degree is very small in all three cases P
(in)
y = 0;±1

in the whole range of Tπ.
Turning to tensor polarization, we follow the Madison

convention [14] to relate the degree of tensor polarization

P
(d)
ij of the deuteron to the statistical tensors ρ

(d)
2q (1, 1) of

its spin, e.g.:

P (d)
yy =

√
2
〈ρ(d)

20 (1, 1)〉
〈ρ(d)

00 (1, 1)〉
.
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Fig. 9. Polarization degree P (d) of the deuteron in the reaction
16O(p, dπ+)15N with protons polarized along the normal to the

reaction plane: P
(in)
y = −1 (dash-dotted lines); P

(in)
y = 0 (solid

lines); P
(in)
y = 1 (dashed lines).

Calculations point to a considerable tensor polarization
of the deuteron. Figure 10 demonstrates a strong depen-

dence of P
(d)
yy on the incoming proton polarization and an

equal, in average, importance of both transferred polar-
ization and induced polarization effects in the resulting

Tπ profile of P
(d)
yy . Solid lines in fig. 10 (top) and (cen-

ter) corresponding to the case of the non-polarized proton
beam show a considerable change in the magnitude and
Tπ behavior of the induced polarization of the deuteron in
both the 16O → 15N(1p−1

1/2) and 16O → 15N(1p−1
3/2) chan-

nels of the nuclear reaction 16O(p, dπ+)15N relative to the
same case in the free two-body pp → dπ+ process. When
the incoming beam is polarized, we note a strong depen-

dence of the polarization transfer contribution to P
(d)
yy on

the total angular momentum j = 1 ± 1/2 of the recoil
nucleus 15N.

4.2.2 A case when the incoming proton is polarized along

its momentum: P (in) = (0, 0, P
(in)
z )

Here the polarization transfer takes place in two direc-
tions: along the incoming beam (axis z) and, also in
the reaction plane, normally to this direction (axis x).
The scalar product P (in) · R in the denominator of (21)
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Fig. 10. Top and center: tensor polarization P
(d)
yy of the

deuteron in the reaction 16O(p, d π+)15N with protons polar-

ized normal to the reaction plane: P
(in)
y = −1 (dash-dotted

lines); P
(in)
y = 0 (solid lines); P

(in)
y = 1 (dashed lines). Bottom:

the same for the free reaction p p → d π+ under conditions (10)
for the (p, d π+) nuclear reaction.

vanishes, so this equation is reduced to

P (d) = eyP (unpol) + (exKxz + ezKzz) P (in)
z .

The first component of this polarization vector, normal
to the reaction plane, represents the polarization induced
under particle-nucleus interactions in the initial and fi-
nal states of the reaction; within the PWIA approach it
vanishes. Polarization transfer coefficients Kxz Kzz show
the magnitude and direction of the in-plane components
of P (d). Figure 11 shows their dependence on the pion en-
ergy Tπ in both channels of the reaction 16O(p, dπ+)15N.
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Fig. 11. Polarization transfer coefficients Kxz and Kzz for the
channels 16O → 15N(1p−1

1/2) (solid lines) and 16O → 15N(1p−1
3/2)

(dashed lines) of the reaction 16O(p, dπ+)15N induced by pro-
tons polarized along their momentum.

4.2.3 Sensitivity of the deuteron polarization to the
parametrization of the two-body pp → dπ+ amplitude

Contrary to the conclusions made after (p, dπ+) exper-
iments with proton energy below 400MeV [24,25], the
differential cross-section of the reaction 16O(p, dπ+)15N
at our energy of 650MeV shown in fig. 6 turned out to
be clearly sensitive to the d-components a3, a4, a5 and
a6 of the Bugg amplitude of the elementary two-body
p p → dπ+ process. To continue the discussion of this ques-
tion in sect. 3.4, we look at it from the point of view of
the polarization characteristics of the produced deuteron.

The top part of fig. 12 demonstrates an example re-
lated to the reaction 16O(p, dπ+)15N(1p−1

3/2) induced by

650MeV protons polarized along their momentum. Until
the amplitudes a3, a4, a5, a6 are included in the calcula-
tion (dashed line), the z-component of the vector polar-
ization of the deuteron retains, as a whole, the orientation
of the spin of the proton (the polarization transfer coef-
ficient Kzz is, on average, positive). After taking the d-
amplitudes into account (solid line), a sort of inversion of
the spin orientation occurs: the coefficient Kzz of the po-
larization transfer becomes negative in almost the whole
range of the Tπ. A rising contribution of the d-waves into
the polarization transfer from the proton to the deuteron
in the free two-body pp → dπ+ process between 450 and
800MeV (see fig. 12, bottom) is the origin of this phe-
nomenon.
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Z(d

)

Fig. 12. Top: the component P
(d)
z of the vector polariza-

tion of the deuteron in the reaction 16O(p, d π+)15N(1p−1
3/2) at

Tp = 650MeV in the case of incoming protons totally polar-

ized along their momentum (P
(in)
z = 1). Bottom: the same

for the free reaction p p → d π+ under conditions (10) for the
nuclear reaction (p, d π+). Solid lines —calculations with the
total set a0, . . . , a6 of the Bugg amplitudes [10]; dashed lines —
calculations with s-wave and p-wave amplitudes a0, a1, a2 only.

4.2.4 The influence of spin-orbit forces in the
proton-nucleus and deuteron-nucleus optical potentials on
the deuteron polarization

It was shown in sects. 3.2 and 4.1 that the sensitivity of the
differential cross-section and analyzing power of the reac-
tion 16O(p, d π+)15N as well as of the alignment analyzing
power A2(kπ,kd|kp) for the excited 15N(1p−1

3/2) recoil nu-

cleus to the spin-orbit particle-nucleus interactions in the
initial and final states of the reaction is very small. This
is not so definite for the polarization characteristics of the
produced deuteron. On the contrary, fig. 13 demonstrates
a strong change in the profile of the Tπ-dependence of the

deuteron vector polarization degree P
(d)
y in both reaction

channels 16O → 15N(1p−1
1/2) and 16O → 15N(1p−1

3/2) when

the spin-orbit term is excluded from the optical poten-
tials of proton-nucleus and deuteron-nucleus interactions.
True, the magnitude of vector polarization is very small
in both examples. The tensor polarization is expected to
be much higher (fig. 14). Here, the spin-orbit distortion
effect is weak.
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Fig. 13. Vector polarization degree P
(d)
y of the deuteron in the

reactions 16O(p, dπ+)15N(1p−1
1/2) and 16O(p, dπ+)15N(1p−1

3/2)
induced by non-polarized protons; solid lines —the same as in

fig. 9 (P
(in)
y = 0); dashed lines —after extracting the spin-orbit

term from the proton-nucleus and deuteron-nucleus optical po-
tentials.

5 Conclusion

Coincidence measurements on the reaction
16O(p, d π+)15N with polarized protons could be,
due to shell model advantages of the doubly magic target
nucleus 16O against the 12C nucleus used in earlier
studies, an important contribution to deeper under-
standing the general features of the (p, d π+) reaction
as a specific sort of nuclear quasi-free processes. We
suggest our DWIA calculations as a theoretical scheme
for extended experiments to be performed including,
besides the differential cross-section and the analyzing
power (p, d π+) measurements, also the polarization char-
acteristics of the produced deuteron and, in perspective,
of the excited recoil nucleus. A proton energy of 650MeV,
higher than in earlier (p, d π+) studies, promises to be
a good step to even higher energies to investigate the
interrelation between various aspects of the mechanism
of the reaction and those related to the nuclear structure
and the initial- and final-state particle-nucleus interac-
tions. At this energy, our calculations point to a high
sensitivity of various observables of the reaction —from
the differential cross-section to the polarization transfer
characteristics of the reaction with polarized protons—
to the spin-multipole decomposition of the amplitude
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Fig. 14. Tensor polarization P
(d)
yy of the deuteron in the re-

action 16O(p, dπ+)15N(1p−1
1/2) and 16O(p, dπ+)15N(1p−1

3/2) in-
duced by protons totally polarized along the normal to the

reaction plane; solid lines —the same as in fig. 10 (P
(in)
y = 1);

dashed lines —after extracting the spin-orbit term from the
proton-nucleus and deuteron-nucleus optical potentials.

of the basic two-body pp → dπ+ process. On the other
hand, both conclusions about the role of spin-dependent
forces in the proton-nucleus and, especially, in the
deuteron-nucleus optical potentials following out from
our DWIA calculations —no sensitivity to them of the
differential cross-section of the reaction and the analyzing
power and, opposite to this, their well pronounced
effect in the proton-to-deuteron polarization transfer—
confirm the general expectations made on this point
earlier [9]. Looking forward, it is worthwhile to add that
our computer code elaborated in the course of the study
can serve for analogous calculations in a wide range
of conditions concerning target nuclei, recoil nucleus
excitations, the energy and polarization characteristics of
the beam, as well as kinematic and geometry conditions
of the coincidence measurements.

In perspective, we consider our (p, d π+) study as a
step towards the theoretical investigation of a wider class
of quasi-free cluster formation nuclear reactions such as
(p, t π+), (p, 3He π+) and (p, 3He η) [30].

The participation of P.V. Safronov in the work at its ear-
lier stage and fruitful discussions with Prof. L.S. Azhgirei are
highly appreciated.
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