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Проект САТУРН (SaTURNE). Измерение электромагнитных характеристик нейтрино с 
использованием интенсивного тритиевого источника (анти)нейтрино.  

Низкотемпературный  

сцинтилляционный: 

 CzI (80 К) 

 Порог - 100 эВ. 

2028 г.:  ~ 5x10-12 B 

ИЯИ РАН; ВНИИЭФ 

Криогенный Si c NTL 

эффектом 

Порог - ~ 1-4 эВ. 

2029г.  ~ (1-2)x10-12 B 

ЛЯП ОИЯИ; ВНИИЭФ; 

НГТУ; ФТИ 

Детекторы 

Жидкогелиевый: 

T= 10-40 мК; 

Порог - ~ 0,01 эВ.   

2032 г.  ~ (3-4)x10-13 B. 

ВНИИЭФ; ЛЯП ОИЯИ; 

НГТУ 

?ФИНАНСИРОВАНИЕ!!! 

 

 

Сфера
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Низкофоновая нейтринная лаборатория 

20-25 м водного эквивалента ВНИИЭФ 

Эволюция ТИН (ВНИИЭФ) 
Трофимов В.Н., 

Неганов Б.С., 

Юхимчук А.А.  ЯФ, 

1998. Т. 61. С. 1373.  

Проект «МАМОНТ» 

Теоретическое 

сопровождение (ФФ МГУ) 

G.C. McLaughlin, C. Volpe arXiv:hep-ph\0312156v2 21Sep 2004 

Reactor – 10E-10; β beem – 10E-11; Tritium – 10E-12 

А.А. Юхимчук и др. Физика изотопов водорода. 

ФИЗМАТ, 2023, том.1, №1, с.5-19  
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Свойства трития и особенности эксперимента с ним 

Постоянная полураспада, Т1/2, лет 
                                               Т1/2, дней 

  12,232 ± 0,004 (1 год=365,25 дней) 
4500,88 ± 1,46 

Энергия распада макс., кэВ 
                                средняя, кэВ 

  18,582 
  5,685 

Тепловыделение от распада   0,328 Вт/г; 1,954 Вт/моль 

Удельная радиоактивность Т2 (газ)   355,9 ТБк/г (9,619 кКи/г) 
2146,9 ТБк/моль (58,023 кКи/моль) 
2,589 Ки/см3=0,386 см3/Ки (при НУ) 
2,372 Ки/см3=0,422 см3/Ки (при НУ) 

Плотность Т2 (газ) (н.у.), 103 г/см3   0,269122 

Пробег β - частиц в: 
 воздухе (н.у.), см 
  Т2 (газ н.у.), см 
  воде (сухом материале, масле, 
полимерах   при ρ=1 г/см3), мкм 
  в стали, мкм 

   
0,036 (5,7 кэВ); 0,45 (18,6 кэВ) 
  0,26 (5,7 кэВ); 3,2 (18,6 кэВ) 
  
  0,42 (5,7 кэВ); 5,2 (18,6 кэВ) 
  0,06 (5,7 кэВ) 

Свойства трития Водород – 96% во Вселенной: 1Н / 2Н / 3Н 

= 1/1,5·10-4/10-18 

3Н образуется в верхних слоях атмосферы 

при взаимодействии космического 

излучения с О2 и N2 .  

По разным оценкам на Земле 3,5÷12,5 кг.  

После испытаний ЯО (1970) -  450 ÷670 кг, 

сегодня 28 ÷ 42 кг 

Нарабатывается в реакторах: 

 6Li + n → 4He + 3H; 2H + n → 3H +  

Применяется: системы нейтронного 

инициирования и бустинга ЯЗ; 

фундаментальная физика; термоядерная 

энергетика; метки в медицине; 

светознаки; прицелы; электробатарейки 

и т.п. 

Основная опасность трития – внутреннее облучение!!! 



Тритиевый источник нейтрино активностью 10 МКи 

Трубчатый элемент: 

М = 1150 г; MТ2 = 37 г; 

 МTi = 318 г. 

Срок службы – 4-5 лет. 

100 х 55 х 157 см 



ТЭ безопасность, надежность 

 Предельная нагрузка (несущая способность) макета ТЭ при 

нагружении давлением аргона составила Pпр = 53 МПа для  

Р раб= 25 МПа. 

 Предварительная оценка прочностной надежности ТЭ в 

условиях эксплуатации составляет свыше 0,9999 при уровне 

доверительной вероятности 0,95. 

Оценка прочностной надежности 

σэкв
IV , 

МПа 

σэкв
𝑚𝑎𝑥 

НДС конструкции в предельном состоянии 

Температура в процессе 

хранения 

Пожар МАГАТЭ: 

30 мин, 800 0С 

Пожар 

МАГАТЭ: 

30мин, 800 0С 

Тепловой эксперимент 

на макете 

Pпр = 53 МПа 

12 (17,5) Вт 
1 г     0,328 Вт 

37 г    12,14Вт 



Сцинтилляционный CsI детектор. Что в мире? 

CsI:50х50х50 мм3, SiPM матрицы с двух сторон.  

Светосбор: 21 ф.э./кэВ при номинальном 

напряжении, 30 ф.э./кэВ при экстремальном 

напряжении. 

Порог регистрации определяется шумами SiPM. 

Eur. Phys. J. C (2024) 84:440 

https://doi.org/10.1140/epjc/s10052-024-12800-y 

NUCL SCI TECH 36, 82 (2025). 

https://doi.org/10.1007/s41365-025-01651-1 

CsI: 20х20х20 мм3.   

Съем сигнала: большой криогенный ФЭУ.  

Светосбор: 35 ф.э./кэВ  

Экстремально дорогой.  

Не годится для больших детекторов.  



Слои из 

модулей 
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Сцинтилляционный CsI детектор. Структура детектора  

Модуль детектора: 
Базовый элемент – 4 кристалла 

SrI2(Eu) или CsI(pure) , помещенный в 

контейнер из пластика. Считывание 

света – SiPM матрица.  

Один слой детектора состоит из 16 

модулей с весом сцинтиллятора 1.6 кг. 

64 кристалла и 64 канала электроники. 

Вес 4 кристаллов  ~ 100 г 

PCB –плата с 

SiPM 

Отверстие для 

кабелей 

Слой детектора Детектор в 

сборе 

Медная пластина с 

отверстием в центре 

для кабелей. 

Медная труба 

снаружи 

детектора 

Вес одного модуля ~ 150 г 

Каждый слой – независимый малогабаритный детектор нейтрино 

с отдельным считыванием экспериментальных данных. 



Готовый детекторный модуль 

Сборка детекторного модуля 

Фотодиодные матрицы и РСВ-платы 

Сотовые контейнеры для кристаллов 
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Фотодиодные матрицы 

Hamamatsu (Япония) 

MPPC S14161-3050HS-04.  

PDE~52% 

В 2025 г. будут готовы к работе 2 слоя детектора,  CsI(pure) сцинтиллятор готов для 5 слоев. 

В планах в ближайшее время испытания по набору фоновой статистики в наземных 

условиях, низкофоновых (БНО) и НФНЛ (Саров). 

Детекторные модули  



9 

 Первые эксперименты по набору фона детекторными модулями  

Время набора: одни сутки. 
Количество событий: около 1 млн. 
Более 90% событий - с амплитудой меньше 10 фотоэлектронов. 
Несколько групп событий с различной природой. 

Двумерная корреляция амплитуд  с одного и того же кристалла. Двумерная корреляция заряда и амплитуды с 

одного и того же кристалла. 

Амплитуды с разным 

количеством фотоэлектронов  
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 Примеры форм сигналов от различных событий 

Послесвечение от космического мюона? 
(набор (6) отдельных фотоэлектронов). 

Низкоэнергетический фон. 
(суперпозиция ~10 фотоэлектронов 
с разным временем) 

Внешняя оптическая связь? 
(суперпозиция нескольких (3) 
одновременных фотоэлектронов) 

Чтобы 
идентифицировать 
события необходим 
анализ формы 
сигналов! 

Фононные/фотонные моды 
возбуждения в кристалле? 
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 Ожидания от фона 

Измерения в БНО:  
Фон в CsI ~1 событие/кэВ 

100 эВ 1 кэВ 

План работ по анализу фона: 
 Необходимо идентифицировать природу различных типов событий. 
 По всей видимости, основные фоновые события связаны с внешней оптической связью (X-talk) либо с возбуждением 

фотонных мод в кристалле. 
 Корреляции между зарядом и амплитудой сигналов позволяют отделить различные типы событий при амплитудах более 

5-10 фотоэлектронов. 
 Анализ форм сигналов должен более явно показать природу событий. 
 Опуститься по порогу ниже 5 фотоэлектронов очень проблематично, поскольку формы сигналов будут приближаться для 

X-talk и сцинтилляционной вспышки. 
 Нужно разработать алгоритмы подавления фона и выделения полезных событий. 

Измерения в ИЯИ (Троицк):  
фон на 3 порядка больше в области 
менее 1 кэВ. 

Очень предварительно! 
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Планы 

2025 Монтаж и тестирование малоразмерного сцинтилляционного детектора нейтрино. 

2026 Изготовление полномасштабного сцинтилляционного детектора. Изготовление конструкции и 

криогенной системы детектора. Исследование уровня собственного радиоактивного фона 

сцинтилляционных модулей. 

2027 Монтаж полномасштабного детектора в экспериментальной зоне. Тестирование полномасштабного 

детектора. Технический сеанс по набору экспериментальных данных с модельным ТИН в НФНЛ. 

2028 Набор и анализ экспериментальных данных. 

Модуль детектора: 

Базовый элемент – 4 кристалла CsI(pure), 

помещенный в контейнер из пластика. 

Считывание света – SiPM матрица.  

Вес 4 

кристаллов  

~100 грамм 
Один слой детектора состоит из 

16 модулей с весом сцинтиллятора 

1.5 кг. 64 кристалла и 64 канала 

электроники. 

• Плата АЦП (Дубна): 

• 64 канала, 14-бит; 

• Один АЦП – один слой детектора; 

• Шаг оцифровки – 16 нс; 

• Временной диапазон – до 32 мкс; 
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Криогенный кремниевый детектор. Состояние в мире 

Б.С. Неганов и В.Н. Трофимов. 

Способ калориметрического 

измерения ионизирующего 

излучения.  SU 10327771 A (1985) 

NTL - efect Коллаборация SuperCDMS (Fermilab, 

225м ВЭ, 10х10х4 мм, V=100 В), 

рекордное разрешение по заряду в 0.03 

электрон-дырочной пары. При этом 

энергетическое разрешение частиц 

оказалось на уровне 𝝈𝑬 ≈ 𝟑, 𝟐 ± 𝟎, 𝟏 эВ.  
arXiv:2509/03608v1 (3 Sep. 2025) 

  
Коллаборация TESSERACT, май 2025 

установила новый абсолютный рекорд в 

области фононного разрешения  

𝝈𝑷 = 𝟐𝟓𝟖. 𝟓 ± 0.4 мэВ, толщина детектора  

1 мм. 

arXiv:2505/16092v1 (22 May 2025) 



Исследование отклика СИН-термометров на кремниевых чувствительных элементах 

F. Probst, et. al., Model for Cryogenic Particle Detectors with Superconducting Phase Transition 

Thermometers, Journ. Low Temp. Phys.100, 1/2, 69 (1995). 

Атермальная 

компонента 

Тепловая 

компонента 

Экспериментальное 

подтверждение 

модели в НГТУ 

Атмосферные µ 
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Криогенный кремниевый детектор. Криорефрижератор, ЛЯП ОИЯИ 
 Завершается подготовка к испытанию опытного 

образца лабораторного рефрижератора.  

 Изготовлены два экземпляра температурного 

контроллера LTM-8. Технические характеристики 

LTM-8 соответствуют лучшим мировым аналогам. 
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Модуль без крышки  

(ЧЭ + СИН + адаптер шага) 

Si-детектор 

Исследования прототипа криогенного кремниевого детектора 

В НГТУ совместно с ФТИ проводятся 

исследования различных конструктивных 

исполнений чувствительных элементов 

криогенного кремниевого детектора. 

Демонстрация эффекта фононного усиления Неганова-Трофимова-Лука  

при повышении напряжения на кремниевом детекторе 

Новые образцы СИН-сенсоров, 

изготавливаемых совместно с 

МФТИ 
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Кремниевый детектор (ФНИИЭФ; ЛЯП ОИЯИ; ФТИ; НГТУ, МГУ ФФ) 

2026 Выбор микрокалориметра и системы считывания для чувствительного элемента Si детектора и его 

испытания. Изготовление и испытания одного слоя Si детектора с использованием многоканальной 

системы регистрации и хранения информации. 

2027 Сборка полноразмерного  Si детектора и начало его испытаний  в наземных условиях, в том числе с 

измерением фонов от модельного ТИН. Транспортировка и монтаж Si детектора в НФНЛ. 

2028 Запуск в работу Si детектора в НФНЛ. Измерение фона в НФНЛ с использованием модельного ТИН.  

Криорефрижератор 

для НФНЛ 
Элемент Si детектора 10 мм  

с СИН термометром.  
СИН термометр, 

изготовленный 

фотолитографией 

Отклик СИН термометра 

на нагрев лазером 

Si 

Ø70x100 



Жидкогелиевый (He II) детектор. Состояние  

Коллаборации, разрабатывающие He II детекторы: 
HeRALD//HERON (США, Япония),   

DELight (Германия),  

HeLIOS (США, Канада), 

QUEST-DMC (3Не) (Великобритания, Япония) 

Прототип детектора коллаборации HeRALD 

на данный момент имеет энергетический порог 

в 145 эВ при 5𝜎 

R. Anthony-Petersen et al.,  Demonstration of the 

HeRALD superfluid helium detector concept,Phys. 

Rev. D 110, 2024 

DELight (Direct search Experiment for Light dark matter), 

разрабатываемый в KIT (Германия), планирует первую фазу с 

10 л (позднее порядка 100 литров) сверхтекучего гелия-4, 

оснащенную 50 магнитными микрокалориметрами (MMC) для 

регистрации эффекта квантового испарения атомов He с 

ожидаемым порогом 10–20 эВ. [September 2025, 20th 

PATRAS Workshop on Axions…] 

[Belina von Krosigk et. al., SciPost Phys. Proc. 12, 016 (2023)] 

Схема регистрации CEʋAS боллометрами   

Рассеяние → атом отдачи (0.2-200мэВ) → фононы, 

ротоны (0.7-2мэВ)→ баллистическое распространение 

→ квантовое испарение атомов с поверхности (0.6мэВ) 

→ адсорбция на поверхности болометра (6-40мэВ) → 

сигнал ΔT схемы регистрации 

Ключевой вопрос: какой процент фононов и ротонов 

достигнет поверхности и вызовет испарение? (10-30%) 

https://journals.aps.org/search/field/author/R Anthony-Petersen
https://journals.aps.org/search/field/author/R Anthony-Petersen
https://journals.aps.org/search/field/author/R Anthony-Petersen


Жидкогелиевый (He II) детектор. Состояние  

Проблемы принципиальные 

Элементы 
детектора 

План Состояние 

Криостат 
растворения (20мК) 

Закупка Разработка (Криотрейд + ЛЯП ОИЯИ +НГТУ 
+ВНИИЭФ) 

TES Закупка Разработка (НГТУ +ИФМ РАН) 

SQUID Закупка Разработка (НГТУ-НН + НГТУ-Новосибирск) 

Проблемы технические 

Явление Состояние, способы решения 

Сверхтекучесть гелия Гидрофобное покрытие Cs, нагрев, (решение не найдено)  

Эффективность 

регистрации 

(0,3 – 30) %; не определена длина баллистической 

траектории движения ротонов и фононов 

....... ....... 

Поиск новых способов решения проблем 

1. Поиск эффективных гидрофобных покрытий; 

2. Исследование физики взаимодействия частиц кэВ-ных энергий с Не II, определение 

длины баллистической траектории в Не II, отражение от поверхностей с различной 

шероховатостью; 

3. Поиск новых схем регистрации (регистрация фононов с помощью СИН-сенсоров, 

оптомеханические, моды шепчущей галереи, др.???))  

17 см 

40 см 

~9 л 

1 СИН/см2   → ~ 2500 СИН 



Фоновые условия 

«+» территория ЯОК ГК «Росатом» 

Соблюдены все правила 

«-» Фоновые условия 

4 м железобетон – 16 м  ВЭ ? 

5 м песок - 5-10 м ВЭ ? 

Итого – 21-26 м ВЭ 

Саров 

«+» фоновые условия идеальные!  

«-»  ????? 

Другие площадки?! 

ББНТ 

подземные 

лаборатории 

Н-1 Н-2 Н-3 
ИД 
 ОГРАН 

ГФ-1 ГФ-

2 

НКЛ  

660 м ВЭ 

1 μ /см2/сутки 

0.69 н с-1 м-2 

 1000 м ВЭ 

~  0.3 μ /см2/сутки 

1.4×10-3 н с-1 м-2 

 4900 м ВЭ 

3,5∙10-4 μ / (см2∙сутки) 

0.02 н с-1 м-2 

Баксан 
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Спасибо  
за внимание 
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Физика нейтрино 

ИЯИ, Троицк 

KATRIN, TLK, Karlsruhe 

Предел для KATRIN: 200 meV 

450 meV 

 Прокачивается ~ 1,8 см3/с  

                                (40 г/день ) 

622 дня → 18,1 кг трития 

Р макс ~ 200-300 мбар 

Тритий в нейтринной физике. Поиск массы нейтрино.  
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Тритий в нейтринной физике. Поиск реликтовых нейтрино - PTOLOMEY 

Коллаборация (2020): 

7 стран, 23 института, 55 ученых  
~3 эВ энергия 

связи 
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Мюонный катализ. Экспериментальный комплекс ТРИТОН (ЛЯП ОИЯИ) 

t


-

d

mµ  207me 

µ  1,2·10-6 c 

• безопасное проведение работ с большими (десятки кКи) 
активностями газообразного трития в условиях открытых 
лабораторий  

• высокие давления до 300 МПа; температуры 20 - 800 К 

• подготовка смеси заданного изотопного состава 

• очистка смеси до уровня 10-7 об. долей по примесям с Z4 

• молекулярный анализ смеси изотопов водорода 

• замкнутый цикл работ с тритием 

• автономность работы 

• автоматизированный контроль и сбор данных 
эксперимента 

Создан в 1995-1996 годах. ВНИИЭФ 

Утилизирован – 2020г 

А.А. Юхимчук и др. Комплекс газового обеспечения экспериментов по 

мюонному катализу ядерных реакций синтеза. ПТЭ №6 (1999) 17-23. 

A.A. Yukhimchuk et al. Facility for preparation of gas mixture in muon catalyzed 

fusion experiments. Hyperfine Interactions. 119 (1999) 341-344. 

В.Г. Клевцов и др. Диффузионная очистка изотопов водорода палладиевыми 

фильтрами. Материаловедение, 5 (2002)  53-56. 

N.S. Ganchuk et al.  Calculation of equilibrium composition and establishing 

time in a mixture of three hydrogen isotopes. Hyperfine Interactions 119 (1999) 

357-360. 

Golubkov A.N., Yukhimchuk A.A. High pressure hydrogen isotopes sources 

based on vanadium hydride. Hyperfine Interactions 138 (2001) 403-408. 



25 

Z 

СВОЙСТВА НЕЙТРОННО-ИЗБЫТОЧНЫХ ЯДЕР НА ГРАНИЦЕ НЕЙТРОННОЙ СТАБИЛЬНОСТИ 

ЛЯР ОИЯИ 
 

• Система напуска ИВ в ионный 

источник циклотрона U400-M  

• Наполнение мишеней ИВ и 3Не, 4Не 

• Эвакуация и утилизация трития из 

мишени 

• Поддержание рабочей температуры с 

точностью 0,1К 

• Мониторинг радиационной 

обстановки 

• Автоматизированный контроль и 

управление рабочими параметрами 

T2 max – 1,0 кКи; Р< 1 bar 

Т от 20 до 300 К Тритиевый пучок E~58 МэВ, 106c-1 

2000 – 2011 г.г. Исследованы свойства ядер: 4H, 5H, 7H, 8He, 10He  1. Yukhimchuk A.A. et al. // Nuclear Instrument 

and Methods in Physics Research A. 2003. 

Vol.515. P.439-447.  

2. Golovkov M.S. et al. // Phys. Lett. B. 2003. 

Vol.566. P.70-75.  

3. Ter-Akopian G.M. et al. // Nuclear Physics A. 

2004. Vol.734. P.293-302.  

4. Golovkov M.S. et al. // Phys. Rev. C. 2005. 

Vol.72. P.1-17. 064612.  

5. Ter-Akopian G.M. et al. // The European 

Physical Journal A – Hadrons and Nuclei. 2005. 

Т. 25. №Suppl.1. С. 315-320. 

6. Grigorenko L.V. et al. // Particles and Nuclei 

Letters 2009. Vol.6 (№2) P.118-125. 

7.  Fomichev A.S. et al. // Eur. Phys. J. A. 2009. 

Vol.42. P.465-469.  

8. Golovkov M.S. et al. // Phys. Lett. B. 2009. 

Vol.672. P.22-29.  

9. Sidorchuk S.I. et al. // Phys. Rev. Lett. 2012. 

Vol.108. P.1-5. 202502.  

10. Григоренко Л.В. и др. // Успехи физ. наук.  

2016. Т. 186. С. 337–386.  

11. Юхимчук А.А. и др. // ФИЗМАТ 2024. Т.1 

(№1) С.5-19 
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Тритиевая инфраструктура для фрагмент-сепаратора АКУЛИНА-2 
Тритиевая инфраструктура фрагмент-сепаратора 

АКУЛИНА-2 обеспечивает безопасную  

эксплуатацию тритиевых мишеней на всех 

стадиях жизненного цикла (наполнение, 

утилизация, хранение).  

Второй класс работ – 2,7кКи       ~1000 см3 н.у. 

 
Единственная в мире площадка для 

проведения исследований с тритием на 

радиоактивных пучках! 

Изучение нейтронно-избыточных систем 6,7Н, 
7,10Не, 13Li  вплоть до 24,26О. 

«Холостой сеанс» 

– декабрь 2024 г. 
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Истоки тритиевого эксперимента по поиску магнитного момента нейтрино в СССР 

Глубокоуважаемый Венедикт Петрович! 

Дирекция ИЯИ АН СССР рассмотрела изложенное в Вашем письме от 

25.11.86 г. предложение о совместной подготовке и проведении эксперимента с 

тритиевым источником в низкофоновой подземной лаборатории Баксанской 

нейтринной обсерватории ИЯИ АН СССР с использованием разработанных в 

ЛЯП ОИЯИ методов низкотемпературного детектирования редких событий. 

ИЯИ АН СССР считает Ваше предложение крайне интересным и 

поддерживает, в принципе, идею создания в Баксанской нейтринной 

обсерватории специальной низкофоновой камеры с тепловым квантовым 

детектором с соответствующими элементами пассивной и активной 

защиты от внешней радиоактивности и космических лучей. Создание 

такой специальной низкофоновой лаборатории откроет новые 

возможности как фундаментальных, так и прикладных исследований в 

области физики элементарных частиц. 

Институт готов принять участие в разработке проекта эксперимента с учетом 

привязки его к подземным помещениям БНО ИЯИ АН СССР. 

Учитывая, что радиоактивная чистота специальных подземных помещений 

БНО АН СССР является одним из важнейших требований, считаем 

необходимым участие специалистов ИЯИ АН СССР в подготовке технического 

задания на проектирование и изготовление тритиевого источника. 

Считаем целесообразным рассмотреть проект данного эксперимента на 

одном из ближайших заседаний Ученого совета ИЯИ АН СССР. 
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Истоки тритиевого эксперимента по поиску магнитного момента нейтрино 

1. B.S. Neganov, V.N. Trofimov, V.N. Stepankin. A Proposal on Cryogenic 

Detection of Neutrino Magnetic Moment at a Level Better Than 10-11 B (Bohr 

Magneton). Journal of Low Temperature Physics. Vol. 93, Nos. ¾, 1993, 745-

749.  

Тритиевый источник согласно [1]: 

Полый сферический источник Ø140хØ300 мм; 

Носитель трития – титан; 

Объем с активным материалом – 14 литров; 

Масса нетто – 56 кг; 

Концентрация трития - 9·1022 см-3 ; (4,55·1022 см-3 ) 

Активность – 60 МКи; 

Тепловыделение – 7 кВт; (1968 Вт) 

Поток антинейтрино в центре - 1,3·1015 см-2·с-1 ; 

Поток антинейтрино на наружной стенке - 1,7·1015 см-2·с-1 . 

 

Предложение заслуживает решительной поддержки 

                                                                          Л.Б. Окунь 
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Интенсивный тритиевый источник антинейтрино (ИТИН) [2] 
Преимущества тритиевого источника 

антинейтрино 

• более интенсивные потоки антинейтрино в 
детекторе, по сравнению с реакторными и 
ускорительными источниками; 

• сильно подавленный коррелированный фон; 

• небольшие размеры, позволяющие 
использовать низкофоновые подземные 
лаборатории и модуляцию потока для 
вычитания некоррелированного фона; 

• знание спектра антинейтрино с высокой 
точностью; 

• низкая граничная энергия спектра распада 
(Е0 = 18,6 кэВ) – тормозное излучение не 
выходит за пределы источника, отсутствует 
необходимость в пассивной защите между 
источником и детектором.  

Максимальный поток  

по оси детектора 

 6·1014 см-2·с-1  

2. V.N. Trofimov, B.S. Neganov, A.A. Yukhimchuk. Measurement of the neutrino magnetic moment at a level better than 10-12 B with a 

tritium  -emitter and cryodetector (project). Physics of atomic nuclei.1998. Т.61. No.8. p.1271-1273  

Для реактора мощностью 1 ГВт такой поток 

может быть получен в детекторе удаленном на 

10 м от активной зоны  реактора   

0,328 Вт/г; 1,954 Вт/моль 

Недостатки конструкции, предложенной в [2]: 

• существенный разогрев ( 309 0С,  снаружи Т ком.) в 

условиях естественного хранения; 

• трудности при транспортировке; 

• специальная технологическая линия для 

изготовления и утилизации. 
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Истоки тритиевого эксперимента по поиску магнитного момента нейтрино 

Исх. от 02.10.98г 

 В письме обосновывалась 

работа по созданию опытного 

образца нейтринного 

источника, технологии 

насыщения титана и 

утилизации трития, 

применительно к конструкции 

источника, разработке 

оборудования и аппаратуры 

для обеспечения безопасности 

проведения работ, включая 

транспортировку источника и 

проведения экспериментов, а 

также создания опытного 

образца детектора. 

 

Подписали: академики РАН: 

А.Н. Скринский, В.Н. Михайлов, 

Р.И. Илькаев, Ю.А. Трутнев, 

В.А. Матвеев, Г.Т. Зацепин,   

Л.Б. Окунь, В.А. Рубаков. 

Член-корры. РАН: 

В.П. Джелепов, В.Г. 

Кадышевский, С.С. Герштейн, 

В.М. Лобашев, Л.И. Пономарев 
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Эволюция взглядов на конструкцию ТИН  

 

Сфера

Цилиндр

Составная конструкция

из ТЭЛов

a)

b)

Детектор

Источник

Sphere 

Cylinder 

TTE assembly 

Source 

Detector 

Нами были выполнены работы по оптимизации 

конструкции ТИН [3,4]. При этом учитывались 

следующие факторы:  

•при имеющемся количестве трития получить 

максимальное число событий взаимодействия 

нейтрино с материалом детектора; 

•размеры и форму детектора; 

•технологические возможности изготовления 

элементов конструкции источника; 

•возможность получения тритида титана (TiTх) 

необходимой плотности; 

•поведение в процессе эксплуатации; 

•безопасность на всех этапах жизненного цикла ТИН; 

•удобства монтажа и демонтажа. 

3. Ю.И. Виноградов и др. Оптимизация конструкции тритиевого источника для экспериментальной установки. В сб. 

«Изотопы водорода. Фундаментальные и прикладные исследования» под ред. А.А. Юхимчука.  

Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2009, с.212-221.  

4. A.A. Yukhimchuk et al. Status of works a 40-MCi-activity source for the measurement of the antineutrino magnetic moment. Fusion 

Science and Technology, 48 (2005) 731-736.  
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Выбор носителя трития 
Для достижения максимальной плотности потока 
(анти)нейтрино необходимо обеспечить 
максимальную объемную активность трития в 
конструкции источника. В тоже время такой 
источник должен быть абсолютно безопасным при 
любых, в том числе и экстремальных, 
обстоятельствах.  

Наиболее подходящим для этого является хранение 
трития в химически связанном состоянии на 
гидридообразующих металлах, которые, с одной 
стороны, имеют более высокую объемную 
плотность содержания водорода, а с другой – 
тритий в них при комнатных температурах имеет 
низкие равновесные давления.  

Выбран дигидрид титана. Низкое равновесное 
давление. Объемное содержание водорода на Ti 
практически в 1,7 раз выше, чем в  жидком 
состоянии. Возможность безопасной эксплуатации  
до 4000С, в то время как для хранения трития в 
жидком состоянии требуется специальная довольно 
мощная холодильная установка, позволяющая 
постоянно поддерживать температуру трития (с 
учетом его тепловыделения) около 20К. 

Материал Ёмкость по Н2 Т дис., 
0С 

Ррав., мм.рт.ст. 

при 250С см3/г см3/см3 

UH3 140 1570 ~150 10-6 – 10-4 

TiH2 

TiH1,85 

468 

432 

1700 

1570 

 

~450 

 

10-7 

MgNiH4 418 1074 240 10-2 

ZrCoH3 186 1415 340-350 10-5 

LaNi3Mn2H6 127   270 10-2 

H2 жид.   854 -253 760 

Реалистические параметры  

TiH2         TiH1,85 

 

В институте проблем материаловедения (г. Киев) 

проведен анализ радиоактивной чистоты макетных  

ТЭ (TiD2) в медных корпусах – получено: 

 238U – 3,7·10-10 г/г; 232Th – 4,9·10-10 г/г 
[A.A. Yukhimchuk et al. Fusion Science and Technology. 

2005. V.48. p. 731-736] 



Сборка детектора 
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Механическая структура с 

пятью слоями и медный 

криогенный объем. 

Первый слой с детекторными 

модулями. 
Детектор погружен в 

криогенный объем. 

Криостат для тестов детектора. 
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Кремниевый детектор. Испытания тестовых структур и чувствительных элементов 
кремниевых детекторов (НГТУ+ФТИ им. А.Ф. Иоффе) 

Создан модуль ЧЭ с термометром СИН и получены его 

температурные отклики при 40 мК. 

 

Зарегистрировано внутреннее тепловое усиление сигнала в 

ЧЭ и получена его зависимость от напряжения 

приложенного к ЧЭ 

 

Создана конструкция ЧЭ на основе двухсторонней М-Д-П 

структуры и экспериментально показана полная активация 

ее чувствительного объема 
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Секторная  кремниевая 

пластина ЧЭ из кремниевой 

заготовки диаметром 100 мм, 

толщиной 1 см после 

полирующего травления  
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Оптомеханический детектор темной материи (ODIN). Фонон от темной 

материи рассеивается на высоконаселенной фононной моде (мода 

рассеяния), накачиваемой лазером 1064 нм, в другую фононную моду, 

связанную с оптической модой 532 нм. Этот фонон преобразуется в 

антистоксов фотон 532 нм и детектируется однофотонным детектором. 

Узкополосное (по энергии) детектирование одиночных фононов мкэВ 

диапазона 

The deposited phonon (μeV range) 

is then converted to a photon (eV 

range) via an optomechanical 

interaction with a pump laser. 


