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On Implementation of the SATURNE Project
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Abstract—We report on the current state of implementation of the Sarov tritium neutrino experiment at
the National Center for Physics and Mathematics. The experiment will involve a high-intensity tritium
neutrino source and three different detection systems sensitive to very low energy depositions. As an
outcome, it is expected to observe for the first time coherent elastic neutrino-atom scattering and achieve a
record-high sensitivity to the neutrino magnetic moment.
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1. INTRODUCTION

Electromagnetic properties of neutrinos and, in
particular, the magnetic moments of neutrinos are
one of the basic unsolved problems in neutrino
physics. Figure 1 shows the historical progress of
the experimentally achieved upper limits [1–12] on
the neutrino magnetic moment μν . The projected
μν sensitivity [13–15] of the Sarov tritium neutrino
experiment (SATURNE [15–17]) is also presented. If
the latter neutrino property is discovered, a window to
new physics will be opened (for an overview, see [18]).

Currently, thanks to the Russian GEMMA ex-
periment for detecting reactor antineutrinos at the
Kalinin Nuclear Power Plant, an upper limit on the
neutrino magnetic moment has been determined to
equal to 2.9× 10−11μB. This results for upper bounds
on the neutrino magnetic moment are the best in the
world for reactor antineutrinos and are included by the
Particle Data Group Collaboration in the “Review of
Elementary Particle Physics” [19].

*E-mail: arkad@triton.vniief.ru

2040202020001980
Year

1960

1.0E-09
�v, �B

1.0E-10 [1] [2]

[3] [4]

[5]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[6]

[8]

1.0E-11

1.0E-12

1.0E-13

Fig. 1. Progress in measuring the laboratory limitation on
the magnetic moment of neutrinos.
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Fig. 2. Sectional drawing of the laboratory building.

It is worth highlighting the recently published
results of the international collaboration XENON
(USA) on the search for the effects of new physics
when measuring the low-energy part of the spectrum
of recoil electrons in the XENON1T detector [20].
One of the possible explanations of the experimental
data obtained was the presence of a solar neutrino
magnetic moment from 1.4× 10−11 to 2.9× 10−11μB.

Within the framework of the SATURNE project,
it is proposed to prepare and implement a series of
experiments to search for the magnetic moment of
neutrinos using three types of detectors which have
different registration thresholds for the energy de-
posited in the detector by the neutrino:

a) a low-temperature (from –60 to –40◦C) scin-
tillation (CsI(pure) or SrI2(Eu), respectively)
detector with a registration threshold of
100 eV [13];

b) a cryogenic (from 10 to 50 mK) silicon detector
with internal gain [21] providing a registration
threshold from 1 to 3 eV [14];

c) a cryogenic (from 40 to 60 mK) helium de-
tector with a registration threshold of about
0.01 eV [15].

Among the proposed experiments, the most am-
bitious is the experiment described in the work [22].
In that paper, for the first time, a fundamentally new
experimental scheme is put forward for observing

coherent elastic neutrino–atom scattering (CEνAS)
using a liquid helium target and electron antineu-
trinos from tritium decay. As a result of the anal-
ysis of the sensitivity of the proposed experimental
setup to the possible magnetic moment of the electron
neutrino, it is shown that it is possible to set an
upper limit for the magnetic moment at the level of
(2− 4)× 10−13μB [15, 17], which is two orders of
magnitude stronger than the constraints obtained in
the GEMMA and Borexino experiments, and almost
an order of magnitude better than the current world
leading experimental limits obtained on the basis of
astrophysical observations (see [19] and references
therein).

2. TRITIUM NEUTRINO SOURCE

The basic design scheme of a tritium neutrino
source (TNS) has been worked out in [23]. TNS
is a set of tritium elements in which tritium is in a
chemically bound state on titanium (Fig. 3).

Titanium powder in bulk is placed in the tritium
element. Then the titanium powder is thermally ac-
tivated and saturated with tritium, afterwards the tri-
tium element is sealed.

In [23], the mass of tritium in the tubular tritium
element is 50 g (0.5 MCi). For a specific detecting
system, the geometry of the tritium element should
be optimized by considering the following aspects:
the efficiency of using the neutrino source, ensuring
the convenience of production and operation of the
tritium element, ensuring the safety of work with the
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Fig. 3. Construction of a tubular tritium element. 1—
titanium tritide; 2 — body.

tritium element and the experimental installation as a
whole.

3. LOW-BACKGROUND NEUTRINO
LABORATORY

To conduct the experiment, it will be necessary
to create a low-background neutrino laboratory
(LBNL), which provides conditions for minimizing
the contribution of the hard component of cosmic
radiation, which will affect the background charac-
teristics of the detecting system.

It is estimated that a 10 m depth underground
or the presence of a powerful concrete floor with a
thickness of about 4 m is sufficient. Figure 2 shows
a cross-sectional diagram of the building available at
VNIIEF. As can be seen from the presented scheme,
there are 4 m of reinforced concrete above the LBNL
working rooms, made before the “nuclear” era and in
this respect pure in elements of the uranium series,
5 m of sand and more than 0.5 m of soil. Therefore,
it is expected that the background conditions will be
acceptable for the work.

4. CONCLUSIONS

The use of an intensive tritium source in combina-
tion with the aforementioned detection systems in the
LBNL will drastically improve the world leading ex-
perimental limits on the neutrino magnetic moment.
This will set a new benchmark in this field for years
to come, and in the case of discovering the neutrino
magnetic moment, it will open a direct portal to new
physics beyond the Standard Model.
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