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Abstract—A description of an experimental scheme for the study of coherent elastic neutrino–atom
scattering using a tritium neutrino source and superfluid He-4 detector is given. The basic concept was
originally proposed in our paper in 2019 and its realization has a potential to provide a new record upper
limit on the neutrino magnetic moment at a level of below 10−12μB. It is currently implemented in the Sarov
tritium neutrino experiment (SATURNE), which is under preparation and will employ a high-intensity
tritium neutrino source with activity of 10 MCi or even 40 MCi.
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INTRODUCTION

The studies of neutrino electromagnetic properties
can open a window to new physics [1]. This is be-
cause the neutrino magnetic moments, the most well
understood and studied among neutrino electromag-
netic characteristics, are zero in the Standard Model
with massless neutrinos. In a minimal extension of
the Standard Model the diagonal magnetic moment
of a massive Dirac neutrino νi with mass mi is given
by [2]

μD
ii =

3eGFmi

8
√
2π2

≈ 3.2× 10−19
( mi

1 eV

)
μB,

where e is the elementary charge, GF is the Fermi
constant, and μB is the Bohr magneton. The
strongest upper bounds for the neutrino magnetic
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moments in laboratory experiments are obtained with
reactor neutrinos: μν ≤ 2.9 × 10−11μB (GEMMA
Collaboration [3]), and solar neutrinos: μν ≤ 2.8 ×
10−11μB (Borexino Collaboration [4]). Recently, the
strongest upper bounds for solar neutrino magnetic
moments have been obtained by XENON Collabora-
tion, μν ≤ 6.4× 10−12μB [5], and LZ Collaboration,
μν ≤ 1.1× 10−11μB [6]. Stronger constraints, at
a level of μν � 10−12 μB are provided by studies of
astrophysical neutrinos (see, for example, [1]). Thus,
it is an important goal of the present fundamental
physics research to fill the gap between the present
experimental limits and the theoretical predictions for
the neutrino magnetic moments.

In our recent paper [7] we have proposed to observe
coherent elastic neutrino–atom scattering (CEνAS)
using electron antineutrinos from tritium decay and a
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Fig. 1. Atomic recoil spectrum in CEνAS with tritium antineutrinos and liquid He-4 [7].

supefluid 4He target. In this scattering process with
the whole atom, that has not been observed so far,
the electrons tend to screen the weak charge of the
nucleus as seen by the electron antineutrino probe.
Figure 1 shows the differential number of neutrino-
induced elastic-scattering events in superfluid He-
4 as a function of the atomic recoil energy TR on a
logarithmic scale [7]. The coherent elastic neutrino
nucleus scattering (CEνNS) differential number is
shown by the black solid line for while the CEνAS one
is shown by the dashed red line. The dashed-dotted
blue line represents the additional term appearing in
the CEνAS differential number of events assuming
a neutrino magnetic moment of μν = 10−12μB while
the dotted green line represents the total differential
number of CEνAS for the same value of μν . We
found that it is possible to set an upper limit that is
about two orders of magnitude smaller than the cur-
rent experimental limits from GEMMA and Borexino.
Such an experiment, SATURNE [8–10], involving
an intense tritium neutrino source is already being
prepared in the framework of the research program of
the National Center for Physics and Mathematics in
Sarov (Russia).

1. EXPERIMENTAL SCHEME

We consider a detector setup such that the tritium
source is surrounded with a cylindrical superfluid-
helium tank, as depicted in Fig. 2. The superfluid
helium must be cryoprotected from the tritium source
due to unacceptable heat production (0.328 W/g)
[11]. This configuration allows us to maximize the
geometrical acceptance, while allowing us to have a
top flat surface where helium atoms could evaporate
after a recoil. The concept of the detection method is
as follows. The recoil of a helium atom after the scat-
tering with an electron antineutrino coming from the

tritium source produces phonons and rotons which,
upon arrival at the top surface, cause helium atoms
to be released by quantum evaporation. An array of
bolometers on the top surface detects the number of
helium atoms evaporated.

The source and tank dimensions depend on the
tritium source activity. For illustrative purposes,
we consider the parameters specific for SATURNE,
namely the tank’s volume of about 1 m3 and two val-
ues of the tritium source activity: 10 MCi (minimally
expected) and 40 MCi (maximally expected).

The expected number of the CEνAS events for five
years of data taking are NCEνAS = 58.9 and 195.2
for the tritium source activity of 10 and 40 MCi,
respectively. These numbers allow one to reach the
sensitivity to CEνAS of at least 5σ. A successful
implementation of such scheme will also allow one
to test the neutrino magnetic moment at the level
of 3.8 × 10−13μB and 2.3× 10−13μB at 90% C.L. for
10 MCi and 40 MCi tritium source, respectively.

2. PROSPECTS

The proposed experimental scheme with a super-
fluid 4He target and a tritium neutrino source will al-
low one to study for the first time the CEνAS process
and to test the neutrino magnetic moment and other
neutrino electromagnetic properties (millicharge and
charge radius) at an unprecedentedly high level of
sensitivity. The SATURNE Collaboration plans to
start the corresponding measurements in 2027 in
a low-background neutrino laboratory that will be
established in Sarov for this purpose [8–10]. It is
expected to use the tritium source with the activity
of at least 10 MCi (1 kg of tritium) and the amount
of tritium can be increased to reach 40 MCi (4 kg of
tritium).
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Fig. 2. Schematic representation of the detector proposed to observe the CEνAS processes.
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